Home >Open Calls >Experiments > AI4SAM

AI for fostering Soft and Active Mobility to accelerate European's transition to climate neutrality



Kentyou proposes innovative AI solutions by collaborating with visionary cities to help in their climate neutral transition, in particular, solutions designed for encouraging active and soft mobility.

In this experimentation, data from a large number of heterogeneous sources (demographic, topographic, points of interests, data about bike lane usage, traffic pattern, weather conditions, etc.) are integrated in the decision-making of the station allocation. Their data analysis process splits the area into geographical cells and by taking into account various parameters (e.g., social groups to incentivize, installation cost) as input to serve different decision policies of each municipality, the proposed optimization algorithm (based on p-median) decides whether to position a station in a cell or not. The goal is to validate their algorithm by using data and use case examples from EHubs4Data and to scale their solution by exploiting EUHubs4Data high performance tools and services (PSNC, TERALAB, EURECAT). The main objectives of the experiments are:

  • Strategically locate the soft mobility stations (shared/electric bikes, scooters, cars) in urban areas.
  • Explore incentivization models for fostering the usage of soft mobility by citizens.


  • Integrate new datasets in sensiNact platform and analyze their impact on the localization problem.
  • Decrease the computational performance of our optimization algorithm by an order of magnitude. (Initial value > 1 h)
  • Develop an application with policy reconfiguration features for the municipality, including incentivization techniques for soft mobility.
  • Increase the maturity of our solution to enable a prototype demonstration (initial TRL = 5)
  • Formalize a business model for the KER and integrate it in the company’s business strategy.


Main innovations


The main result is a solution for multimodal mobility. Kentyou used local data sets to optimize the localization of mobility services such as bicycle sharing stations, Electric Vehicles charging stations, or other multimodal transport solutions. During the experiment, they were able to integrate a very large number of datasets  (more than 260), and from their analysis they developed a dashboard with recommendations for optimal locations. This will be proposed in a product + service approach, as each local community has different available datasets, but also different requirements in term of localization and priorities.


This solution provides a unifying framework, able to easily integrate heterogeneous data into a unique processing environment. The unification provides adapters and wrappers for each relevant standard in order to include quickly and easily, at run-time, any data source of valuable information. This development considers a wide variety of data (traffic, topographic), parameters (social groups) and municipality policies (cost) affecting the decision of the location-allocation optimization.


From an environmental perspective, this solution will reduce the use of individual cars, account for more than 16% of the greenhouse emissions in France, by encouraging bicycle and electric car usage. And from a social perspective, this algorithm is specifically designed to ensure fairness in transportation access and to target different social groups (unemployed, ageing population). Furthermore, it promotes a healthier and more active lifestyle.


Kentyou provides open digital twin solutions, to gather and analyse meaningful urban data and build solutions that respond to city demands. Over the years, our team has been one of the leaders of the European smart city innovation ecosystem.